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Nuclear shadowing: data and global fits  
• Nuclear shadowing = high-energy (small x) collective/coherent nuclear effect:           
F2A(x,Q2) <A F2N(x,Q2) → gA(x,Q2) <A gN(x,Q2)
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Piller, Weise (2000)

Fig. 3.2. (a) NMC data [72] for the structure function ratio F!
"
/F!

"
for #He, $"C, and #%Ca. (b) The ratio F!

"
/F!

"
for &Li,

$"C [76], and $'$Xe [77].

can be identi"ed: at x(0.1 one observes a systematic reduction of F!
"
/F!

"
, the so-called nuclear

shadowing. A small enhancement is seen at 0.1(x(0.2. The dip at 0.3(x(0.8 is often referred
to as the traditional `EMC e!ecta. For x'0.8 the observed enhancement of the nuclear structure
function is associated with nuclear Fermi motion. Finally, note again that nuclear structure
functions can extend beyond x"1, the kinematic limit for scattering from free nucleons.

! Shadowing region: Measurements of E665 [77}79] at Fermilab and NMC [72,76,80}83] at
CERN provide detailed and systematic information about the x- and A-dependence of the
structure function ratios F!

"
/F!

"
. Nuclear targets ranging from He to Pb have been used.

A sample of data for several nuclei is shown in Fig. 3.2. While most experiments cover the region
x'10(#, the E665 collaboration provides data for F)"

"
/F!

"
[77] down to xK2!10(*. Given

the kinematic constraints in "xed target experiments, the small x-region has been explored at
low Q" only. For example, at xK5!10(' the typical momentum transfers are Q"K1 GeV"
[76]. At extremely small values, xK6!10(*, one has Q"K0.03GeV" [77].

In the region 5!10('(x(0.1 the structure function ratios systematically decrease with
decreasing x. At still smaller x one enters the range of small momentum transfers,
Q"K0.5GeV", approaching the limit of high-energy photon}nucleus interactions with real
photons. As an example we show in Fig. 3.3 data on shadowing for real photon scattering
from &'Cu.

Shadowing systematically increases with the nuclear mass number A. For example, at
x+0.01 one "nds F!

"
/F+

"
&A"($ with !+0.95 [82]. A similar behavior has been observed in

high-energy photonuclear cross sections [91]: their A-dependence is roughly "#!+A%,-""#.
where "#. is the free photon}nucleon cross section averaged over proton and neutron.

The shadowing e!ect depends only weakly on the momentum transfer Q". The most precise
investigation of this issue has been performed for the ratio of Sn and carbon structure functions
presented in Fig. 3.4 [83]. It reveals that shadowing decreases at most linearly with lnQ" for
x(0.1. The rate of this decrease becomes smaller with rising x. At x'0.1 no signi"cant
Q"-dependence of F/#

"
/F+

"
is found.
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0) = RA

dV
(x,Q2

0) was made as only one type of data sensitive to the large-x valence quarks
was included in these fits. Indeed, at large x, one can approximate
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2
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dV

]

, (4)

which underscores the fact that these data can constrain only a certain linear combination of RA
uV

and RA
dV

. Despite the lack of other type of data sensitive to the valence quarks, the assumption

RA
uV

(x,Q2
0) = RA

dV
(x,Q2

0) was released in a recent nCTEQ work leading to mutually wildly different

RA
uV

and RA
dV

(see Fig.1 in Ref.[18]). Other type of data sensitive to the valence quarks would
obviously be required to pin down them separately in a more realistic manner. Despite the fact
that some neutrino data (also sensitive to the valence quarks) was included in the dssz fit, the
authors did not investigate the possible difference between RA

uV
and RA

dV
in the paper.

In the case of RA
u , which here generally represents the sea quark modification, all parametriza-

tions are in a fair agreement in the data-constrained region. This is also true if the nCTEQ results
are considered (Fig.1 in Ref.[18]). Above the parametrization scale Q2 > Q2

0, the sea quark modi-
fications are also significantly affected, especially at large x (x ! 0.2), by the corresponding gluon
modification RA

g via the DGLAP evolution.
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Figure 3: Comparison of the gluon nuclear modification factors for the lead nucleus at Q2 = 10GeV2 (left), and the
nuclear modification for inclusive pion production in d+Au collisions at midrapidity.

The largest differences among eps09, hkn07, and dssz are in the nuclear effects for the gluon
PDFs, shown in Fig. 3. The origins of the large differences are more or less known: The DIS and
Drell-Yan data are mainly sensitive to the quarks, and thus leave RA

g quite unconstrained. To
improve on this, eps09 and dssz make use of the nuclear modification observed in the inclusive
pion production at RHIC [26, 27]. An example of these data are shown in Fig. 3. Although the
pion data included in eps09 and dssz are not exactly the same, it may still look surprising how
different the resulting RA

g are. The reason lies (as noted also e.g. in [28]) in the use of different

parton-to-pion fragmentation functions (FFs) Dk→π+X(z,Q2) in the calculation of the inclusive
pion production cross sections

dσd+Au→π+X =
∑

i,j,k

fd
i ⊗ dσ̂ij→k ⊗ fAu

j ⊗Dk→π+X . (5)
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• Nuclear PDFs, especially gA(x,µ2), are known with large uncertainties.  

• Small-x, small-Q2 fixed-target data may contain large HT effects, Qiu, Vitev, 2004  

• pA@LHC data help mostly in antishadowing region, Armesto et al, arXiv:1512.01528; Eskola et 
al, JHEP 1310 (2013) 213 

• Future options: Electron-Ion Collider in the US, Accardi et al, ArXiv:1212.1701; 
LHeC@CERN, LHEC Study Group, J. Phys. G39 (2012) 075001 

• Option right now: Charmonium photoproduction in Pb-Pb UPCs@LHC

shadowing

Global QCD fits 

antishadowing



Nuclear shadowing: Gribov-Glauber model  
• At high-energies, probe interacts coherently (collectively) with all nucleons of the 
nucleus target.
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• For nucleon beams, elastic dominates → Glauber model for total, elastic, inelastic 
pA and nA cross sections with % accuracy. 

• For 𝛾 (𝛾*), diffraction into large masses is 40% (~100%) of diffr. dissociation cross 
section → shadowing driven by multiple rescatterings of effective cross section:

characterized by the factor of Rj(x) = fj/A(x)/[Afj/N (x)], where fj/A(x) is the parton (quark or gluon)
distribution of flavor j in a nucleus and fj/N is the parton distribution of a free nucleon.

Note that in studies of nuclear shadowing in inclusive scattering, one always assumes that in the
impulse approximation, F2A(x) = ZF2p(x) +NF2n(x) for x < 0.1, i.e., the effects of nuclear binding and
off-shellness can be safely neglected. This is based on the estimate of [1] that in the absence of non-
nucleonic degrees of freedom (e.g., extra nuclear pions) and nuclear modifications of the bound nucleon:

R(x) = 1 +
⟨T ⟩n(n+ 1)x

3mN (1− x)2

(

x−
2

n+ 1

)

, (1)

where n ≈ 3 and ⟨T ⟩ is the average bound nucleon kinetic energy. Taking kN = 200 MeV/c, we obtain
⟨T ⟩ = k2N/(2mN ) = 0.02 GeV and, hence, R(x) = 1 + 0.09x(x − 0.5). Thus, for x < 0.1, the effect
of nuclear binding binding is less than 1%. Therefore, nuclear shadowing and the effects modifying
the impulse approximation live in different regions of x and, hence, can be considered separately and
additively.

When performing global fitting and extraction of nuclear PDFs from the data, the EPS09 and DSSZ
analyses ignored nuclear effects in deuterium, while the HKN07 and nCTEQ took them into account. In
general, since F2p(x) and F2n(x) differ by a few percent at small x, even 1 − 2% nuclear modifications
of F2D(x) matter for the extraction of F2p(x) − F2n(x) from the data and for global fits of the nucleon
PDFs. This makes our project relevant for modern global analyses of proton PDFs in the LHC era, see
e.g., [9].

1.3 Models of nuclear shadowing

Theoretically, nuclear shadowing is well understood. In the target rest frame, the virtual photon–nucleus
interaction is a three-step process: (i) long before the target, the virtual photon fluctuates into a super-
position of states, (ii) these fluctuations interact strongly with the target, which leads to their absorp-
tion/attenuation causing nuclear shadowing, (iii) long after the target, the fluctuations combine together
to form the observed final state (virtual photon, vector meson, real photon).

Nuclear shadowing arises due to destructive quantum-mechanical interference among the scattering
amplitudes corresponding to the interaction of a given fluctuation with one, two, three, etc. nucleons of the
nuclear target. The resulting nuclear cross section is given by a series (the so-called Glauber series [10]),
where each term corresponds to the interaction with a given number of nucleons. For instance, for the
pion–deuteron scattering, there two graphs shown in Fig. 2: the left one is the impulse approximation
corresponding to the interaction with a single nucleon and the right one is the shadowing correction
arising from the simultaneous interaction of the pion with both nucleons.

shadowing correctionimpulse approximation

N
N

N

N

DDDD

ππ
ππ

Figure 2: Graphs for pion-deuteron scattering.

The nuclear shadowing term can be expressed in terms of the elementary pion–nucleon diffractive
cross section [11], which in graphical form is shown in Fig. 3. In the figure, the zigzag lines denote the
diffractive interaction (Pomeron exchange) of the pion with the nucleons of the nuclear target.

The resulting total pion–deuteron cross section reads:

σπD
tot = 2σπN

tot − 2
1− η2

1 + η2

∫

dk⃗2ρD
(

4k⃗2
) dσπN

diff (k⃗)

dk⃗2
, (2)

2

• Intermediate states are elastic (Glauber) and elastic+inelastic (Gribov), Glauber 1955, 
Gribov, 1969 → nuclear shadowing is driven by elementary diffraction

�e↵ =
16⇡

��⇤N

Z
dM2

X

d�di↵
�⇤N (t = 0)

dM2
Xdt

• Shadowing is a result of destructive interference 
of amplitudes for the interaction with 1, 2, 3, etc. 
nucleons of the target.

• Good description of total 𝛾A and 𝛾*A cross sections, Frankfurt, Strikman 1999; Adeluyi, Fai 2006; 
Capella et al (1997); Armesto et al (2003); Tywoniuk et al (2006) 



Leading twist nuclear shadowing model  
• For 𝛾*, one can combine Gribov-Glauber model with QCD factorization theorems for 
inclusive and diffractive DIS → shadowing for individual partons j, Frankfurt, Strikman (1999)
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the interaction with one, two, and three nucleons, respectively.
Graph a gives the impulse approximation; graphs b and c contribute to the shadowing correction.

Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

in the case of the deuteron target. One should also note that Eqs. (43) and (44) do not require the decomposition over
twists. The only requirement is that the nucleus is a system of color neutral objects—nucleons. The data on the EMC ratio
F2A(x,Q 2)/[AF2N(x,Q 2)] for x > 0.1 indicate that the corrections to the multinucleon picture of the nucleus do not exceed
few percent for x  0.5, see the discussion in Section 3.2.

The next crucial step in the derivation of ourmaster equation for nuclear PDFs is the use of theQCD factorization theorems
for inclusive DIS and hard diffraction in DIS. According to the QCD factorization theorem for inclusive DIS (for a review, see,
e.g., [58]) the inclusive structure function F2(x,Q 2) (of any target) is given by the convolution of hard scattering coefficients
Cj with the parton distribution functions of the target fj (j is the parton flavor):

F2(x,Q 2) = x
X

j=q,q̄,g

Z 1

x

dy
y
Cj

✓
x
y
,Q 2

◆
fj(y,Q 2). (45)

Since the coefficient functions Cj do not depend on the target, Eq. (34) leads to the relation between nuclear PDFs of flavor
j, which are evaluated in the impulse approximation, f (a)

j/A , and the nucleon PDFs fj/N ,

xf (a)
j/A (x,Q 2) = Axfj/N(x,Q 2). (46)

In the graphical form, f (a)
j/A is given by graph a in Figs. 10 and 11.

Note also that one can take into account the difference between the proton and neutron PDFs by replacing Afj/N !
Zfj/p + (A � Z)fj/n, where Z is the number of protons, and the subscripts p and n refer to the free proton and neutron,
respectively.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states that, at given fixed t and xP

and in the leading twist (LT) approximation, the diffractive structure function FD(4)
2 can be written as the convolution of the

same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)
j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (47)

• Interaction with 2 nucleons: 
model-indep via diffractive PDFs:

— +

• Interaction with ≥ 3 nucleons: via 
soft hadronic fluctuations of 𝛾*

�

j

2(x) =
16⇡

xf

j/N

(x, µ2)

Z 0.1

x

dx

P

�f

D(4)
j/N

(x, µ2
, x

P

, t = 0)

P(σ) probability to 
interact with cs σ

• In quasi-eikonal approximation in low-x limit, Frankfurt, Guzey, Strikman 2012:

xf

j/A

(x, µ2) = Af

j/N

(x, µ2)�
2�j

2

f

j/N

(x, µ2)

[�j

soft

(x)]2

Z
d

2

b

 
e

� 1

2

�

j
soft

(x)TA(b) � 1 +
�

j

soft

(x)

2
T

A

(b)

!

�

soft

(x) =

R
d�P�(�)�3

R
d�P�(�)�2

—



Leading twist nuclear shadowing model (2)  
• Model gives input NLO nuclear PDFs at µ2=4 GeV2 for subsequent DGLAP evolution.
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Fig. 31. Predictions for nuclear shadowing at the input scale Q 2
0 = 4 GeV2. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at

Q 2 = 4. The four upper panels are for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10_H and FGS10_L (see the
text).

Another important quantity related to the longitudinal structure function is the ratio of the virtual photon-target cross
sections for the longitudinal and transverse polarizations of the virtual photon,

R ⌘ �L

�T
= FL(x,Q 2)

F2(x,Q 2) � FL(x,Q 2)
. (123)

Below we present our predictions for the super-ratio RA/RN , which is the ratio of the nuclear to the nucleon ratios R:

RA

RN
⌘ FA

L (x,Q 2)

F2A(x,Q 2) � FA
L (x,Q 2)

F2N(x,Q 2) � FN
L (x,Q 2)

FN
L (x,Q 2)

= FA
L (x,Q 2)

AFN
L (x,Q 2)

AF2N(x,Q 2)

F2A(x,Q 2)

1 � FN
L (x,Q 2)/F2N(x,Q 2)

1 � FA
L (x,Q 2)/F2A(x,Q 2)

. (124)

The advantage of considering the super-ratio RA/RN is that this quantity is essentially insensitive to the value of the
elementary ratio RN .

Fig. 36 presents our predictions for RA/RN of Eq. (124) for 40Ca and 208Pb for four different values of Q 2 as a function of
Bjorken x. Both models FGS10_H and FGS10_L give numerically indistinguishable predictions for RA/RN . Also, as one can see

• Antishadowing for gluons only, “by hand” requiring momentum sum rule conservation. 

• Name “leading twist” because diffractive structure functions/PDFs measured at HERA 
scale with Q2, i.e., LT quantity. 

• Main theoretical uncertainty from σsoft 

• Absent in case of deuteron → can be used to test the LT shadowing approach. 



Leading twist nuclear shadowing model (3)  
• Results of NLO DGLAP evolution using LT nuclear shadowing input:  
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,

�F2A(x,Q 2)/A /
✓
1
x

◆0.22

,

�xgA(x,Q 2)/A /
✓
1
x

◆0.22

, (127)

which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give

Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255



Leading twist nuclear shadowing model (4)  
• Gluon diffractive PDFs are large, ZEUS, H1 2006 → large shadowing for gA(x,µ2), Frankfurt, 

Guzey, Strikman, Phys. Rept. 512 (2012) 255 
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Input: Leading twist (LTA) vs. EPS09 Results of DGLAP evolution: from Q2=4 
GeV2 to Q2=10 and 10,000 GeV2 
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For quarks, the agreement between LTA and  EPS09 is much better.



LT shadowing: Impact parameter dependence  
• Shadowing arises from rescattering on target nucleons at given impact parameter b. 

• Removing integral over b → impact parameter dependent nuclear PDFs: 
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xf

j/A

(x, b, µ2) = T

A

(b)xf
j/N

(x)�
2�j

2

f
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and 208Pb (lower red surfaces). The graphs show the ratio
Rj(x, b,Q 2) of Eq. (132) as a function of x and the impact parameter |Eb| at Q 2 = 4 GeV2. The top panel corresponds to ū-quarks; the bottom panel
corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10_H was used (see the text). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 41. The ratio fj/A/(ATA(b)fj/N ) as a function of x. The solid curves correspond to the central impact parameter (b = 0); the dotted curves are for the
nPDFs integrated over all b (the same as in Figs. 33 and 34). All curves correspond to Q 2

0 = 4 GeV2 and to model FGS10_H.

Hj
A(x, 0, Eb,Q 2), even if such correlations were absent in the free nucleon GPD. (In Eq. (130) we neglected the x-b correlations

in the nucleon GPDs by neglecting the t dependence of Hj
N(x, 0, t,Q 2) and using Hj

N(x, 0, t,Q 2) ⇡ fj/N(x,Q 2).)

• Can be only indirectly determined using global QCD fits, EPS09s nPDFs, Helenius et al (2012) 

• Can be probed and tested in: 
- centrality dependence of hard pA/AA processes, Helenius et al (2012) 
- t dependence of exclusive 𝛾*A and 𝛾A processes, e.g., 𝛾*A → 𝛾A, Frankfurt, VG, 

Strikman 2012,  𝛾A → J/𝜓A, VG, Strikman, Zhalov, work in progress 
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Nuclear diffractive parton distributions 
• Leading twist nuclear shadowing model can be applied to inclusive diffraction in 𝛾*A:

9

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 335

a b c

Fig. 68. The multiple scattering series for the � ⇤A ! XA scattering amplitude. Graphs a, b, c correspond to the interaction with one, two, and three
nucleons of the nuclear target, respectively. Graph a is the impulse approximation; graphs b and c contribute to the shadowing correction.

Note thatwe expressed the longitudinalmomentum transfer�� ⇤X in terms of xP,�� ⇤X = xPmN . Using the QCD factorization
theorem for diffraction (163) in the right-hand and left-hand sides of Eq. (168), we obtain the expression for the nuclear
diffractive PDFs f D(3)

j/A :

�f D(3)
j/A (�,Q 2, xP) = 4⇡A2�f D(4)

j/N (�,Q 2, xP, tmin)

Z
d2b

����

Z 1

�1
dzeixPmNze� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0)⇢A(b, z)

����
2

. (169)

Finally, assuming the exponential t dependence of f D(4)
j/N , i.e., using Eq. (59), we obtain our final expression for the nuclear

diffraction parton distribution �f D(3)
j/A [26,210]:

�f D(3)
j/A (�,Q 2, xP) = 4⇡A2Bdiff�f D(3)

j/N (�,Q 2, xP)

Z
d2b

����

Z 1

�1
dzeixPmNze� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0)⇢A(b, z)

����
2

. (170)

The structure of the answer resembles the case of the diffractive productions of vector mesons (after the generic diffractive
state X is replaced by a single vector meson), see e.g., Ref. [80].

Eq. (170) should be compared to Eq. (64): the both equations are derived in the color fluctuation approximation
characterized by the cross section �

j
soft(x,Q

2) that determines the strength of the multiple rescatterings. Note also that
the nuclear shadowing correction to �f D(3)

j/A given by Eq. (170) corresponds to the diffractive unitary cut in the language of
the AGK cutting rules, see Eq. (24) and graph a in Fig. 8.

The physics interpretation of Eq. (170) is rather straightforward: the diffractive scattering takes place on any ofAnucleons
of the target at point (Eb, z); the produced diffractive state gets absorbed on the way out with the probability amplitude
e� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0).

In the limit of very small xP, the effect of the finite coherent length, i.e., the eixPmNz factor, can be neglected and Eq. (170)
can be presented in the following simplified form:

�f D(3)
j/A (�,Q 2, xP) ⇡ 16⇡Bdiff�f D(3)

j/N (�,Q 2, xP)

Z
d2Eb

�����
1 � e� A

2 (1�i⌘)�
j
soft(x,Q

2)TA(b)

(1 � i⌘)�
j
soft(x,Q 2)

�����

2

. (171)

In Eq. (170), we neglected the possible dependence of �
j
soft(x,Q

2) on � (the dependence on the diffractive mass MX ).
Since the total probability of diffraction changes rather weakly as one varies the rescattering cross section, see e.g., Ref. [34],
this seems to be a reasonable first approximation. At the same time, in the region of small � and small x that corresponds to
the triple Pomeron kinematics for the soft inelastic diffraction, one expects a suppression of diffraction as compared to the
color fluctuation approximation used in Eq. (170). Indeed, Eq. (170) evaluated atQ 2 = Q 2

0 = 4 GeV2 essentially corresponds
to treating diffraction as a superposition of elastic scattering of different components of the virtual photon wave function.
This is a reasonable approximation for the configurations with the masses comparable to Q 2. In the � ⌧ 1 limit (which
corresponds to M2

X � Q 2), one approaches the limit analogous to the soft triple Pomeron limit, in which case diffraction
off nuclei is strongly suppressed compared to elastic scattering, see, e.g., Refs. [211,212]. Hence, we somewhat overestimate
diffraction for small � and relatively small Q 2

0 scales. At larger Q 2, diffraction at small � is dominated by the QCD evolution
from � � 0.1 at Q 2

0 and, hence, the accuracy of our approximation improves. Thus, in our numerical studies, we neglect the
effect of the potential small-� suppression that we just discussed.

One can immediately see from Eq. (170) that the Regge factorization, i.e., the factorization of f D(3)
j/A (�,Q 2, xP) into the

product of the Pomeron flux factor fP(xP) and the PDFs of the Pomeron fj(�,Q 2), see Eq. (88), is not valid for the nuclear
diffractive parton distributions, even if it approximately holds for the nucleon case. At fixed xP, the right-hand side of
Eq. (170) depends not only on� , but also on Bjorken x since the screening factor is given by the exponential factor containing
�

j
soft(x,Q

2)which is a function of x. In addition, the right-hand side of Eq. (170) depends on the atomic mass number A since

�f

D(3)

j/A

(x, µ2

, x

P

) = 16⇡fD(4)

j/N

(x, µ2

, x

P

, t = 0)

Z
d

2

b

 
1� e

� 1

2

�

j
soft

(x)TA(b)

�

j

soft

(x)

!
2

• Predicted large probability of hard diffraction on nuclei and nuclear diffractive PDFs:

• Can be measured in inclusive 𝛾*A diffraction at LHeC/EIC and hard diffraction in 𝛾A, 
e.g., diffractive photoproduction of dijets in UPCs@LHC, Guzey, Klasen 2016

— + —

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1

Pb-208, Q2=4 GeV2, β=0.1

g
A
D
(
3
)
(
x
,
x
P
)
/
A
g
p
D
(
3
)
(
x
,
x
P
)

xP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-4 10-3 10-2 10-1

Q2=4 GeV2

P
g

x

Pb-208
proton



Leading twist vs. all-twist shadowing  
• In our leading twist shadowing model, we take µ2=4 GeV2 to minimize (i) HT effects 
in diffractive PDFs, H1, ZEUS, 2006, (ii) cross section fluctuation in 𝛾*  

• We underestimate shadowing at fixed-target energies 
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Comparison of theoretical predictions: Leading twist model (LTA) and LT+HT (ρ, ω, and ɸ 
vector mesons) to NMC 1995 fixed-target data.

 → HT effects may contaminate global QCD fits of nuclear PDFs.   



Leading twist vs. higher-twist shadowing  

11

• Principal difference between our LTA and all-twist approaches, e.g. dipole model: 
Frankfurt, Guzey, McDermott, Strikman 2002 Author's personal copy
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Fig. 9. Graphs for to the total virtual photon–nucleus cross section, �� ⇤A . Graph a gives the impulse approximation; graphs b and c give the shadowing
correction arising from the interaction with two and three nucleons of the target, respectively.

When lc is larger than the diameter of the nucleus, 2RA, the virtual photon coherently (‘‘simultaneously’’) interactswith all
nucleons of the target located at the same impact parameter. For instance, for the nucleus of 40Ca, this happens for x  0.01.
On the other hand, when lc decreases and becomes compatible to the average distance between two nucleons in the nucleus,
rNN ⇡ 1.7 fm, all effects associated with large lc are expected to disappear. Therefore, the nuclear effects of shadowing and
antishadowing disappear for x > 0.2 (see also the discussion in Section 3.2 where this is discussed in the reference frame
of the fast moving nucleus).

The wave function of the projectile virtual photon is characterized by the distribution over components (fluctuations)
that widely differ in the strength of the interaction with the target: the fluctuations of a small transverse size correspond
to the small interaction strength and the large phase volume, while the fluctuations of a large transverse size correspond
to the large interaction strength but the small phase volume. A proper account of the interplay between the phase volume
of different configurations and their strength of interactions shows [122] that these components lead to the contributions
characterized by the same power of Q 2: �� ⇤T / 1/Q 2.1 Hence, at moderately small x, nuclear shadowing is a predominantly
non-perturbative QCD phenomenon complicated by the leading twist Q 2 evolution. At extremely small x, perturbative QCD
(pQCD) interactions become strong which leads to a change of the dynamics of nuclear shadowing, see the discussion in
Section 8.

At sufficiently high energies (small Bjorken x), when the virtual photon interacts with many nucleons of the target, the
lepton–nucleus scattering amplitude receives contributions from the graphs presented in Fig. 9. Considering the forward
scattering and taking the imaginary part of the graphs in Fig. 9 (presented by the vertical dashed lines), one obtains
the graphical representation for the total virtual photon–nucleus cross section, �� ⇤A. Note that there are other graphs,
corresponding to the interaction with four and more nucleons of the target, which are not shown in Fig. 9; the contribution
of these graphs to �� ⇤A is insignificant. However, they appear to be important in the case of the events with the multiplicity
significantly larger than the average.

Graph a in Fig. 9, which is a generalization of the left graph in Fig. 2 to the case of DIS, corresponds to the interaction with
one nucleon of the target (the impulse approximation). The contribution of graph a to �� ⇤A, which we denote �

(a)
� ⇤A, is

�
(a)
� ⇤A = A�� ⇤N , (31)

where �� ⇤N is the total virtual photon–nucleon cross section. The proton and neutron total cross sections (structure
functions) are very close at small x, and, therefore, unless specified, we shall not distinguish between protons and neutrons.
Also, in Eq. (31), we employed the non-relativistic approximation for the nucleus wave function. A more accurate treatment
would involve the light-cone many-nucleon approximation for the description of nuclei which leads to tiny corrections to
Eq. (31) for small x due to the Fermi motion effect, see Section 3.2. The good accuracy of this approximation has been tested
by numerous studies of elastic and total hadron–nucleus scattering cross sections at intermediate energies.

The total cross section in Eq. (31) corresponds to the sumof the cross sectionswith the transverse (�� ⇤
T N ) and longitudinal

(�� ⇤
L N ) polarizations of the virtual photon. These cross sections can be expressed in terms of the isospin-averaged inclusive

(unpolarized) structure function F2N(x,Q 2) and longitudinal structure function FL(x,Q 2), see, e.g. [101]:

�� ⇤
T N + �� ⇤

L N = �� ⇤N = 4⇡2↵em

Q 2(1 � x)
F2N(x,Q 2),

�� ⇤
L N = 4⇡2↵em

Q 2(1 � x)
FL(x,Q 2), (32)

1 This parton-model reasoning ismodified in QCDwhere the configurationswith almost on-mass-shell quarks are suppressed at largeQ 2 by the Sudakov
form factor. An account of radiation (Q 2 evolution) leads to the appearance of hard gluons (in addition to thenear on-mass-shell quarks) in thewave function
of the virtual photon. This property of QCD is important for the theoretical analysis of hard diffractive processes considered in Section 6.

Author's personal copy
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a b c

Fig. 55. Graphs corresponding to the virtual photon–nucleus cross section in the eikonal approximation. Graph a gives the impulse approximation; graphs
b and c give the shadowing correction arising from the interaction with two and three nucleons of the target, respectively.

Within the eikonal approximation, the expression for the nuclear inclusive structure function F2A(x,Q 2) reads, see,
e.g., [75],

F2A(x,Q 2) = AF2N(x,Q 2) � Q 2

4⇡2↵em
<e

"Z 1

0
d↵ d2d?

X

i

| (↵,Q 2, d2?,mi)|2

⇥ A(A � 1)
2

(1 � i⌘)2
Z

d2Eb
Z 1

�1
dz1

Z 1

z1
dz2

h
�qq̄N(x,Q 2, d2?,mi)

i2
⇢A(Eb, z1)⇢A(Eb, z2)

⇥ ei(z1�z2)2xmN e� A
2 (1�i⌘)�qq̄N (x,Q 2,d2?,mi)

R z2
z1 dz⇢A(z)

#

. (138)

In Eq. (138), ↵em is the fine-structure constant; ↵ is the fraction of the photon longitudinal momentum carried by q or q̄; d?
is the transverse diameter of the qq̄-system; mi is the mass of the constituent quark of flavor i; ⌘ is the ratio of the real to
imaginary parts of qq̄-nucleon scattering amplitude; | |2 is the probability of the virtual photon-qq̄ transition (the square
of the effective light-conewave functions of the virtual photon); �qq̄N is the qq̄-nucleon cross section, which is schematically
denoted by the two-gluon exchange in Fig. 55.

The square of the effective unpolarized light-cone wave function of the virtual photon, | |2, can be written as the sum
of the squares of the wave function for the transversely-polarized photon, | T |2, and the effective wave function for the
longitudinally-polarized photon, | L|2, i.e., | |2 = | T |2 + | L|2, where

| T (↵,Q 2, d2?,mi)|2 = 6↵em

4⇡2 e2i
⇥�
↵2 + (1 � ↵)2

�
✏2i K

2
1 (✏i d?) + m2

i K
2
0 (✏i d?)

⇤
,

| L(↵,Q 2, d2?,mi)|2 = 6↵em

⇡2 e2i Q
2↵2(1 � ↵)2K 2

0 (✏i d?). (139)

In Eq. (139), K0 and K1 are the modified Hankel functions; ✏2i = Q 2↵(1 � ↵) + m2
i . Following the analysis in Ref. [75], we

include four quark flavors and take mu = md = ms = 300 MeV and mc = 1.5 GeV. Note that the effective  L differs from
the light-cone wave function of the longitudinal photon. The additional factor of Q results from the exact cancellation of the
components of the longitudinal photon polarization vector that increase with energy, which follows from the conservation
of the electromagnetic current for the whole amplitude. (For the discussion of conceptual differences between the leading
twist and dipole model eikonal approximations to nuclear shadowing, see Section 5.14.4.)

Taking the longitudinally-polarized virtual photon, one readily obtains the expression for the longitudinal nuclear
structure function FA

L (x,Q 2):

FA
L (x,Q 2) = AFN

L (x,Q 2) � Q 2

4⇡2↵em
<e

"Z 1

0
d↵ d2d?

X

i

| L(↵,Q 2, d2?,mi)|2

⇥ A(A � 1)
2

(1 � i⌘)2
Z

d2Eb
Z 1

�1
dz1

Z 1

z1
dz2[�qq̄N(x,Q 2, d2?,mi)]2⇢A(Eb, z1)⇢A(Eb, z2)

⇥ ei(z1�z2)2xmN e� A
2 (1�i⌘)�qq̄N (x,Q 2,d2?,mi)

R z2
z1 dz⇢A(z)

#

. (140)

• The difference should manifest itself 
in observables dominated by small-
size dipoles:  

- nuclear longitudinal structure function 
FLA(x,Q2) at LHeC/EIC 

- nuclear suppression of J/𝜓 
photoproduction on nuclei in 
UPCs@LHC

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 327

Fig. 60. The shadowing correction to the nuclear longitudinal structure function FA
L (x,Q 2), 1 � FA

L (x,Q 2)/[AFN
L (x,Q 2)], as a function of Q 2 for x = 10�4

and x = 10�3. The curves correspond to the dipole model eikonal approximation; the shaded bands are the results of the leading twist theory of nuclear
shadowing.

FA
L (x,Q 2), see Figs. 59 and 60.) This happens because the dipole model eikonal approximation includes only the qq̄-
component of the virtual photonwave function and neglects diffractively produced inelastic states, such as qq̄g , qq̄gg , etc. To
reproduce the correct Q 2 behavior of nuclear shadowing, which is governed by the DGLAP evolution equation, one should
include the complete set of Fock states, i.e., aQ 2-dependent number of constituents, aswell as the QCD evolution trajectories
starting at large x � 0.1, where the nuclear PDFs are not screened in the leading twist approach. (For the discussion of QCD
trajectories, see Section 5.15.)

It is also worth mentioning that the lack of separation over twists in the dipole eikonal model precludes a simple
connection between thenuclear effects inDIS andother hardprocesses, such as the production of jets in� ⇤T ! jet1+jet2+X
and in pA ! jet1 + jet2 + X , etc.

Also, there are several technical problems with the implementation of the eikonal approximation. Firstly, in the
kinematicswhere the elastic and inelastic qq̄-nucleon cross sections are compatible, the use of the inelastic�qq̄N cross section
alone would significantly underestimate nuclear shadowing.

Secondly, to reproduce nuclear shadowing at the higher end of the shadowing region, 0.01  x  0.1, one needs to take
into account the non-zero longitudinal momentum transfer to the nucleus through the factor exp(i2xmN(z1 � z2)). In order
to arrive at this factor in the eikonal approximation, one needs to make a bold assumption that all essential Fock states of
the virtual photon have the same invariant mass of the order of Q .

Thirdly, in the target infinite momentum frame, the main source of the disappearance of nuclear shadowing with an
increase of Q 2 at fixed x is the mixing between the small-x and large-x contributions, which occurs due to the DGLAP
evolution. This effects is absent in the dipole eikonal approximation.

5.15. QCD evolution trajectories

The Q 2 evolution of nuclear PDFs is governed by the DGLAP evolution equations, see Eq. (117). The general trend of
the DGLAP Q 2 evolution is well known. As Q 2 increases, the parton densities shift toward lower values of x because of
the emission of softer partons. Therefore, the evolution proceeds along a trajectory in the x–Q 2 plane, which extends from
low Q 2 and high x toward large Q 2 and small x. The detailed knowledge of this trajectory is very important. It enables, for
example, to estimate the influence of the input PDFs at the initial evolution scale Q 2

0 on the result of the QCD evolution to
higher scales Q 2 and to judge as to what region of x at Q 2

0 contributes to the PDFs after the evolution. Also, an understanding
of the QCD evolution trajectory is relevant for the studies of the applicability of the leading twist QCD evolution.

To numerically study the trajectory in the x–Q 2 plane alongwhich the DGLAP evolution proceeds, we adopt the following
algorithm [74]. At the input scale, Q 2

0 = 4 GeV2, we pick an arbitrary value of x0, which will serve as the starting point of
the evolution trajectory, (x0,Q 2

0 ). For any Q 02 > Q 2
0 , we find x0, x0 < x0, by requiring that half of fj/A(x0,Q 02) comes from the

Triple-Pomeron coupling to 2 nucleons
Separate Pomeron couplings to 2 nucleons 
→ higher twist (HT) for small dipoles

vs.

Q2
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Exclusive charmonium photoproduction  
• To leading order in αS  and in non-relativistic approximation for charmonium    
(J/𝜓, 𝜓(2S)) distribution amplitude:

M. Ryskin (1993)

Z. Phys. C 57, 89-92 (1993) 
Zeitschrift P a r t i c ~  fur Physik C 

 9 Springer-Verlag 1993 

Diffractive J/ P electroproduction in LLA QCD 
M.G. Ryskin 

Department of Theoretical Physics, University of Lund, S61vegatan 14A, S-22362 Lund, Sweden 
and St. Petersbourg Nuclear Physics Institute, 188350 Gatchina, St. Petersbourg, Russia 

Received 13 April 1992 

Abstract. Cross section of diffractive J / ~  production in 
deep inelastic scattering in the Born and the leading-log 
approximations of perturbative QCD are calculated. 

I Introduction 

The process of J /7  j electroproduction arouses interest 
due to two reasons. First, it can be calculated within the 
perturbative QCD and second, its cross section is propor- 
tional to the gluon structure function. So, it is a good way 
to study the gluon distribution inside a proton [1, 2]. 

In the reactions of heavy-quark photoproduction 7N--, 
c6X, a popular approach is the "photon-gluon fusion" 
mechanism [3, 1, 4, 5] based on the subprocess 7g~cd. 
The amplitude and cross section of inelastic J~ 7 J produc- 
tion via the same mechanism was calculated in [6] and 
then discussed in [7]. This approach has been called [5] 
diffractive J~ 7 j production, as (in the first approximation) 
the cross section does not depend on energy and there is 
no flavour exchange. Strictly speaking, this is not a true 
diffractive process. There is a colour exchange in this case 
due to the colour of the gluon content in the target; as 

da 
a consequence, the inclusive J/qJ cross section ~zz ~const .  

at z ~  1, instead of the &(1 - z )  or 1/(1 - z )  behaviours that 
are usual for diffractive processes (z is the part of photon 
momenta carried away by the J /7  J meson). 

The goal of this paper is to consider the exclusive (in 
some sense elastic) diffractive J / ~  electroproduction that 
is described by the exchange of a colourless two-gluon 
system*; in the Born approximation by the diagrams in 
Fig. 1. In the leading-log approximation (LLA), instead of 
the simple two-gluon "pomeron" [9], one has to use the 
whole system of LLA ladder diagrams; for t -- 0 this repro- 
duces exactly the gluon structure function ~G(Y, ~2). 

* The model for elastic and diffractive J/~ production based on 
vector meson dominance and pomeron exchange was considered 
recently in [8]. 

Thus, our amplitude is proportional to ~G(Y, ~2) and the 
exclusive diffractive cross sec t ion- to  the square of the 
gluon structure function. Due to this fact, the reaction 
7*+N--*J/Tt+N feels the variation of 2G(Y, ~2) better 
than the inclusive J/~t' cross section, which depends on 
YG(Y, ~2) only linearly. Therefore, this process is one of 
the best ways to measure the role of absorptive correc- 
tions (pomeron cuts contributions) and to observe the 
saturation of gluon density predicted in the frame-work of 
perturbative QCD in 1-10]. 

In Sect. 2 we calculate the amplitude of diffractive J / 7  j 
photoproduction. In Sect. 3 we discuss the spin structure 
of this amplitude and correspondingly the distribution in 
azimuthal angle. In Sect. 4 the numerical estimates of the 
single and double diffractive dissociation cross sections 
are given. 

2 Amplitude of ~,* +p--,J/W+p 

The Born amplitude of 7*+p--*J/~+p reaction is de- 
scribed by the sum of the two diagrams in Fig. 1. As the 
binding energy of S-wave e6-quarks J /7  J system is small 
(much less than the charm quark mass me= m), one can 
follow I-6] and use the nonrelativistic approximation, 
writing the product of two propagators (k and k' in Fig. 1) 
and the J / 7  J vertex (i.e. J / 7  J wave function integrated 
over the relative momenta of c6^quarks k = k '  in J / 7  J 
rest-frame system) in the form g(k+m)Tu. The constant 

~ 7  

l +  

qJ 
k 

a b 

Fig. la, b. Feynman diagrams for diffractive J/7 J production 

��A!J/ A(W�p) =
(1 + ⌘

2
A)R

2
g,A

(1 + ⌘

2)R2
g

d��p!J/ p(W�p, t = 0)

dt


GA(x, µ2)

AGN (x, µ2)

�2
�A(tmin)

Small correction kA/N ≈ 0.95 From HERA and LHCb

�A(tmin) =

Z tmin

�1
dt|FA(t)|2

From nuclear 
form factorGluon shadow. Rg

d��T!J/ T (W, t = 0)

dt
=

16⇡3�ee

3↵e.m.M5
V

⇥
↵S(µ

2)Hg(⇠, ⇠, t = 0, µ2)
⇤2

• At LO and small ξ, GPDs are expressed in terms of PDFs:

Hg(⇠, ⇠, t = 0, µ2) = Rgxg(xB , µ
2)

Rg =

2

2�+3

p
⇡

�(�+ 5/2)

�(4 + �)

⇡ 1.2, for xg ⇠ 1/x

�
with � ⇡ 0.2

• Application to nuclear targets:
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Comparison to ALICE and CMS UPC data 

• Good agreement with ALICE data on coherent J/𝜓 photoproduction in Pb-Pb 
UPCs@2.76 TeV  → first direct evidence of large gluon nuclear shadowing at x=0.001. 

• Similarly good description using EPS09+CTEQ6L. 

• Cannot be described by simple versions of the dipole model, Lappi, Mantysaari 2013

4

case of ψ(2S) corresponds to µ2 = 4 GeV2. In the figure, we show two sets of predictions:

the predictions of the dynamical leading twist theory of nuclear shadowing [12] (the curves

labeled “LTA+CTEQ6L1”, which span the theoretical uncertainty band) and the results of

the EPS09 global QCD fit of nuclear PDFs [13] (the central value and the associated shaded

uncertainty band labeled “EPS09”).

In the case of photoproduction of J/ψ, the theoretical predictions describe well the values

of S(Wγp) (the filled squares with the associated errors), which were model-independently

extracted in the analysis [1] of the ALICE data on J/ψ photoproduction in Pb-Pb ultrape-

ripheral collisions at the LHC at
√
s = 2.76 TeV [3, 4].
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FIG. 1: The suppression factor of S(Wγp) of Eq. (5) for photoproduction of J/ψ (two upper

panels) and ψ(2S) (two lower panels) on 208Pb as a function of x = M2
V /W

2
γp. We show two sets

of theoretical predictions: those of the leading twist theory of nuclear shadowing [12] (the curves

labeled “LTA+CTEQ6L1”, which span the theoretical uncertainty band) and those of the EPS09

global QCD fit of nuclear PDFs [13] (the central value and the associated shaded uncertainty band

labeled “EPS09”). The filled squares and the associated errors are the results of the analysis of [1]

in the J/ψ case.

Guzey, Zhalov JHEP 1310 (2013) 207

Abelev et al. [ALICE], PLB718 (2013) 1273; 
Abbas et al. [ALICE], EPJ C 73 (2013) 2617 

[CMS], arXiv:1605.06966 [nucl-ex]
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 (2.76 TeV)-1bµ              159 ψ Pb+Pb+J/→Pb+Pb 

CMS

Figure 2: Differential cross section versus rapidity for coherent J/y production in ultra-
peripheral PbPb collisions at

p
sNN = 2.76 TeV, measured by ALICE [29, 30] and CMS (see text

for details). The vertical error bars include the statistical and systematic uncertainties added
in quadrature, and the horizontal bars represent the range of the measurements in y. Also the
impulse approximation and the leading twist approximation calculations are shown (see text
for details).

input and implements a gluon recombination mechanism within the leading twist approxima-
tion result. This results in an effective nuclear gluon shadowing. The theoretical uncertainty
band for the leading twist approximation result shown in Fig. 2 is 12% and is due to the uncer-
tainty in the strength of the gluon recombination mechanism. This uncertainty is uncorrelated
with the photon flux uncertainty. The nuclear gluon distribution uncertainty is largest at mid-
rapidity where x ⇠ 10�3 in the nuclear gluon distribution. At forward rapidity there is a
two-fold ambiguity about the photon direction but the measurements are mostly sensitive to
x ⇠ 10�2 [29].

The data are also compared to the impulse approximation result that uses data from exclusive
J/y photoproduction in g + p interactions to estimate the coherent J/y cross section in g + Pb
collisions. By using g + p data, the impulse approximation calculation neglects all nuclear
effects such as the expected modification of the gluon density in the lead nuclei compared
to that of the proton. This calculation overpredicts the CMS measurement by more than 3
standard deviations in the rapidity interval 1.8 < |y| < 2.3, when adding the experimental and
theoretical uncertainties in quadrature.

The impulse approximation calculation is derived from the product of two quantities: the elas-
tic nuclear form factor FA(t) and the differential cross section ds/dt of g + p ! J/y + p, where
t is the momentum transfer from the target nucleus squared. The FA(t) is the Fourier transform
of the matter density r(t), while the elementary cross section ds/dt has been measured by var-
ious collaborations [4–8], as described in Section 1. The impulse approximation result shown

• Nuclear suppression factor S:
S(W�p) =

"
��Pb!J/ Pb

�

IA
�Pb!J/ Pb

#1/2

= A/N
GA(x, µ2)

AGN (x, µ2)
= A/NRg
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Transverse imaging of nuclear gluon distributions 

• Shift of t-dependence is caused by broadening in transverse plane of nuclear gluon 
distribution due to nuclear shadowing → ΔRA/RA ≈ 1.05-1.11.

Guzey, Strikman, Zhalov, 
work in progress

• Nuclear shadowing does not only suppress the 𝛾A → J/𝜓A cross section, but also 
modifies its t dependence.
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FIG. 1: The d��A!V A(W�p)/dt cross section for ⇢ (top panel) and J/ (lower panel) for 208Pb normalized to its value at
t = tmin as a function of |t|. The cross section are calculated at W�p = 62 GeV for ⇢ and W�p = 124 GeV for J/ , corresponding
to the LHC Run 2

p
sNN = 5.02 TeV and y = 0. The resulting t dependence is compared to that given by the normalized

nuclear form factor squared |FA(t)/A|2.

transverse size of the nuclear gluon distribution of Ref. [33]. The transverse broadening of the nuclear gluon and sea
quark distributions caused by nuclear shadowing can also be studied in other exclusive processes such as, e.g., deeply
virtual Compton scattering, where it leads to dramatic oscillations of the beam-spin cross section asymmetry [33].
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[Eqs. (1) and (3)] and incoherent [Eqs. (4)] contributions, respectively; the red solid curve is the sum of the coherent
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where g
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where Bdi↵ ⇡ 6 GeV�2 is the slope of the t dependence of the cross section of hard inclusive di↵raction on the proton
in deep inelastic scattering (DIS) �⇤p ! Xp [36]; ⌘ ⇡ 0.17 is the ratio of the real to imaginary parts of the �⇤p ! Xp
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where Bdi↵ ⇡ 6 GeV�2 is the slope of the t dependence of the cross section of hard inclusive di↵raction on the proton
in deep inelastic scattering (DIS) �⇤p ! Xp [36]; ⌘ ⇡ 0.17 is the ratio of the real to imaginary parts of the �⇤p ! Xp

• Nuclear GPD in ξ=0 limit ⬌ impact 
parameter dependent nuclear PDF
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l Nuclear PDFs at small x are poorly constrained, especially in gluon channel. 

l Leading twist nuclear shadowing model is a dynamical approach to nuclear 
PDFs and nuclear diffractive PDFs at small x, whose phenomenology requires 
only a few weakly-constrained parameters. 

l The approach makes definite predictions for x, Q2 and b dependence of 
nPDFs in the collider kinematics of LHC, LHeC and EIC, where results of global 
QCD fits are an extrapolation. 

l Predicted large nuclear gluon shadowing is confirmed by ALICE and CMS 
measurements of coherent J/𝜓 photoproduction on Pb in UPCs@LHC.

Conclusions


